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The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to
cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster,
hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic
Yersinia species. Here, we show that HrpJ is secreted in culture and translocated into plant cells by the P.
syringae pv. tomato DC3000 TTSS. A DC3000 hrpJ mutant, UNL140, was greatly reduced in its ability to cause
disease symptoms and multiply in Arabidopsis thaliana. UNL140 exhibited a reduced ability to elicit a hyper-
sensitive response (HR) in nonhost tobacco plants. UNL140 was unable to elicit an AvrRpt2- or AvrB1-
dependent HR in A. thaliana but maintained its ability to secrete AvrB1 in culture via the TTSS. Additionally,
UNL140 was defective in its ability to translocate the effectors AvrPto1, HopB1, and AvrPtoB. Type III secretion
assays showed that UNL140 secreted HrpA1 and AvrPto1 but was unable to secrete HrpZ1, a protein that is
normally secreted in culture in relatively large amounts, into culture supernatants. Taken together, our data
indicate that HrpJ is a type III secreted protein that is important for pathogenicity and the translocation of
effectors into plant cells. Based on the failure of UNL140 to secrete HrpZ1, HrpJ may play a role in controlling
type III secretion, and in its absence, specific accessory proteins, like HrpZ1, may not be extracellularly
localized, resulting in disabled translocation of effectors into plant cells.

Pseudomonas syringae is a host-specific bacterial plant patho-
gen that is capable of infecting many different plant species (3,
38). P. syringae causes a variety of diseases on susceptible
plants, typically producing symptoms that manifest as necrotic
and chlorotic lesions on aerial plant parts. On resistant plants,
P. syringae often triggers plant innate immune responses, in-
cluding the hypersensitive response (HR), a programmed cell
death response associated with plant resistance (36).

A central pathogenicity factor for P. syringae is a type III
protein secretion system (TTSS) called the Hrp TTSS, which is
encoded by the hrp-hrc cluster within the Hrp pathogenicity
island (2). The P. syringae Hrp TTSS translocates or injects
many type III secreted proteins, known as effectors, into plant
cells. P. syringae mutants defective in the Hrp TTSS are se-
verely compromised in pathogenicity and are unable to elicit
an HR on nonhost plants (53, 54). This indicates that collec-
tively, these injected effectors are required for pathogenesis
and that the nonhost HR is likely due to plant recognition of a
subset of injected effectors in resistant plants. This is consistent
with the well-documented recognition of bacterial type III ef-
fectors historically referred to as avirulence (Avr) proteins by
plant resistance (R) proteins (16, 19).

The availability of the complete genomes of P. syringae pv.
tomato DC3000 (9), P. syringae pv. syringae B728a (23), and P.
syringae pv. phaseolicola 1448a (44) facilitated the identifica-
tion of many P. syringae type III secreted proteins (12, 17, 30).
Recently, a unified naming system for P. syringae type III se-

creted proteins was established, and these names will be used
for the proteins described in this paper (52). Evidence that
many of the P. syringae type III effectors injected into plant
cells act as suppressors of the plant’s innate immune system is
accumulating (21, 57, 58). However, the enzymatic activities of
the majority of P. syringae effectors and their plant targets
remain unknown.

Bacterial TTSSs secrete other helper or accessory proteins
that make up the extracellular portion of the type III apparatus
and other proteins that function to help the type III apparatus
deliver effector proteins into host cells. These include proteins
that make up the type III-related needles, sheaths, or pili
(depending on the TTSS) needed for the extracellular conduit
that transports effectors. In the P. syringae TTSS, the HrpA1
protein has been shown to be the main component of the Hrp
pilus (43, 51, 63). Other accessory proteins include translocator
proteins that assist effectors in crossing the eukaryotic plasma
membrane (10). Another group of proteins, called harpins,
which are glycine-rich, heat-stable proteins predicted to modify
the plant cell wall and/or act as translocators, have been iden-
tified (39, 50, 67). P. syringae has two harpins identified thus
far, HrpZ1 and HrpW1. HrpZ1 was the first protein shown to
be secreted via the P. syringae Hrp TTSS (34) and has been
shown to form pores in artificial membranes, suggesting a role
in translocation (50). HrpW1 has an N-terminal harpin domain
and a C-terminal pectate lyase domain, suggesting that it acts
on the plant cell wall (13). More recently, type III secreted
HrpK1 has been shown to be required for pathogenicity and
for effector translocation (60). Because of these phenotypes
and other circumstantial evidence, HrpK1 appears to be a type
III translocator.

The P. syringae type III apparatus is made up of about 20
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proteins. Ten of these proteins, the so-called Hrc proteins (for
HR and conserved), are conserved in all nonflagellar TTSSs,
and nine of the Hrc proteins are conserved in flagellar TTSSs
(4, 40). The lone exception is HrcC, which belongs to the
secretin family of outer-membrane proteins present in several
macromolecule transport systems in gram-negative bacteria
(27). The TTSSs of bacterial plant pathogens fall into two
different groups based on the degree of conservation of their
protein components. Group I includes the model TTSSs of P.
syringae and Erwinia amylovora, and group II includes the
model TTSSs of Ralstonia solanacearum and Xanthomonas
campestris (4, 35). Several P. syringae Hrp proteins encoded by
the hrp-hrc cluster are conserved in a subset of nonflagellar
TTSSs, several are conserved only in bacterial plant pathogen
TTSSs, and others appear to be unique to P. syringae and other
group I Hrp TTSSs (4, 35).

One P. syringae protein, HrpJ, appears to be conserved in a
subset of nonflagellar TTSSs and possesses clear homologs in
plant pathogenic group I TTSSs but is not noticeably similar to
any proteins in plant pathogenic group II TTSSs (4, 40). HrpJ
is encoded by a gene within a five-gene operon in the P.
syringae hrp-hrc cluster, and it has been reported to share
similarity with YopN, a protein secreted via the Yersinia sp.
Ysc TTSS (4, 40). Yersinia spp. grown in culture secrete Yop
proteins via their Ysc TTSS at 37°C in the absence of calcium
but not in the presence of calcium (8, 55). Thus, the absence of
calcium appears to act as an environmental cue for the contact-
dependent injection of Yop proteins by the Ysc TTSS into
animal cells (61). Yersinia yopN mutants secrete Yop proteins
in the presence or absence of calcium, a phenotype referred to
as “calcium blind” (25). Thus, YopN is viewed as a control
protein that prevents inappropriate type III secretion.

To address the role that HrpJ has in the DC3000 TTSS, we
tested whether HrpJ was secreted in culture and translocated
by the TTSS and determined its effect on the secretion and
translocation of other P. syringae type III secreted proteins.
Here, we report that HrpJ is secreted in culture and translo-
cated into plant cells by the P. syringae pv. tomato DC3000
TTSS. A DC3000 hrpJ mutant was greatly reduced in its ability
to cause disease and multiply in plant tissue. Moreover, the
DC3000 hrpJ mutant was reduced in its ability to elicit the
nonhost HR, suggesting that it was less competent in the trans-
location of type III effectors. This was confirmed by the finding
that individual DC3000 effectors were translocated at very low
levels, if at all, by the DC3000 hrpJ mutant. Interestingly, the
DC3000 hrpJ mutant retained its ability to secrete type III
effectors in culture but was unable to secrete the HrpZ1 ex-
tracellular accessory protein. These findings allowed us to pro-
pose that HrpJ functions as a control protein for the P. syringae
TTSS and that its activities are required for the translocation
of effectors into plant cells and for the secretion of the HrpZ1
harpin in culture.

MATERIALS AND METHODS

Bacterial strains and media. Escherichia coli strain DH5� was used for general
cloning (Table 1) and was grown in Luria-Bertani broth at 37°C. Pseudomonas
syringae pv. tomato DC3000 was grown in King’s B broth at 30°C or type
III-inducing fructose minimal medium at 20°C (41, 46). Antibiotics were used at
the following concentrations (�g ml�1): rifampin, 100; ampicillin, 100; gentamicin,
10; kanamycin, 50; chloramphemiol, 20; tetracycline, 20; and spectinomycin, 50.

General DNA manipulations. Restriction enzymes, T4 ligase, and DNA poly-
merase were purchased from New England Biolabs (Beverly, Mass.). The ther-
mostable DNA polymerase used in PCRs was Pfu polymerase (Stratagene, La
Jolla, Calif.). The oligonucleotide primers used for plasmid constructions were
ordered from Integrated DNA Technologies (Coralville, Iowa), and these prim-
ers or information about them will be made available upon request. For cloning
using Gateway technology, we amplified desired target genes using PCR and Pfu
polymerase and cloned the amplified fragments into the pENTR/D-TOPO vec-
tor (Invitrogen, Carlsbad, Calif.). The resulting pENTR constructs were recom-
bined with Gateway destination vectors by LR reaction using LR clonase (In-
vitrogen) following the manufacturer’s instructions. We used standard cycling
conditions for PCRs. Plasmids were introduced into P. syringae strains by elec-
troporation. General DNA sequence analysis was performed with Lasergene
software (DNAstar Inc., Madison, Wis.). Database searches were done with the
BLASTN, BLASTP, BLASTX, and PSI-BLAST programs at NCBI (http://www
.ncbi.nlm.nih.gov/blast/index.shtml) (5).

Construction of plasmids. hrpJ, avrPto1, and avrB1 were cloned into the
pENTR/D-TOPO vector (Invitrogen) by PCR with primers P759 and P760, P689
and P690, and P1134 and P1135, resulting in constructs pLN375, pLN307, and
pLN820, respectively. pLN820, pLN323, and pLN307 were recombined into the
CyaA Gateway destination vector pCPP3234, resulting in pLN918, pLN1979, and
pLN1985, respectively. The hrpJ entry construct pLN375 was recombined into
the destination vectors pCPP5040, pLN705, and pLN677, resulting in constructs
pLN426, pLN736, and pLN726, respectively. The adenylate cyclase coding region
lacking its start codon was amplified by PCR with primers P1963 and P1710 from
pCPP3234 and ligated into pBluescript KS(�) by use of SacI and NotI restriction
enzymes, resulting in construct pLN2043. Gateway cassette frame A was digested
with EcoRV and ligated into the NotI restriction site of pLN2043, resulting in
construct pLN2190. The Gateway CyaA cassette from pLN2190 was isolated and
ligated into the HindIII and SacI restriction sites of pML123, resulting in the
broad-host-range Gateway destination vector pLN2193. The hrpJ entry construct
pLN375 was recombined into pLN2193, resulting in pLN2234.

Construction of the DC3000 hrpJ nonpolar mutant UNL140. To construct a
DC3000 nonpolar hrpJ mutant, DNA upstream of hrpJ was amplified by PCR
with primers P801 and P802. This PCR product was ligated into the XbaI and
HindIII restriction enzyme sites of pCPP2988, which is a pBluescript derivative
that contains an nptII gene lacking a transcriptional terminator, resulting in
pLN2179. A DNA region downstream of hrpJ was amplified by PCR with primers
P803 and P804 and ligated into the XhoI and KpnI sites of pLN2179, resulting
in construct pLN2180. The insert in pLN2180, which contained an nptII gene
flanked by the upstream and downstream fragments of hrpJ, was isolated by
digestion with restriction enzymes KpnI and XbaI and ligated into pRK415,
resulting in construct pLN2302. This construct was electroporated into DC3000.
Putative mutants were identified by selection for retention of the antibiotic
marker linked to the mutation and loss of the plasmid marker. A colony with this
phenotype was confirmed to have the hrpJ gene replaced with nptII by PCR with
primer sets P759 and P760 and P988 and P986. This DC3000 mutant was
designated UNL140. Additionally, UNL140 was confirmed to carry an hrpJ
deletion mutation by Southern analysis by probing with DNA flanking hrpJ.

Type III secretion assays. P. syringae strains were grown overnight on King’s B
plates containing appropriate antibiotics. Test strains were inoculated at an
optical density at 600 nm (OD600) of 0.3 in type III-inducing minimal medium at
20°C (41) (or at 30°C in experiments to test for temperature regulation) and
grown for 6 h. Cell and supernatant fractions were separated by centrifugation,
and the protein in the supernatant fraction was precipitated with 12.5% trichlo-
roacetic acid. Proteins were separated on 10% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) gels and transferred to membranes
for immunoblotting. The following primary antibodies were used: anti-AvrPto1,
anti-HrpZ1, anti-HrpA1, anti-hemagglutinin (HA) (Roche Diagnostics Corp.,
Indianapolis, Ind.), anti-�-lactamase (Chemicon International, Temecula,
Calif.), anti-FLAG (Sigma Chemical Co.), and anti-NptII (Cortex Biochem, San
Leandro, Calif.). Primary antibodies were recognized by anti-mouse, anti-rabbit,
or anti-rat immunoglobulin G-alkaline phosphatase conjugate secondary anti-
bodies (Sigma Chemical Co.) and visualized on autoradiographs with the West-
ern-Light chemiluminescence system (Tropix, Bedford, Mass.). NptII or �-lac-
tamase was used as an indicator of nonspecific cell lysis in secretion assays.

Pathogenicity and HR assays. DC3000 strains were assessed for their ability to
cause disease symptoms and multiply in planta by dipping of Arabidopsis thaliana
ecotype Col-0 plants into bacterial suspensions that were adjusted to an OD600

of 0.2 in 10 mM MgCl2 containing 0.02% Silwet L-77 (Lehle Seeds, Round Rock,
TX) and enumerated as previously described (22). DC3000 strains were tested
for the ability to elicit an HR on Nicotiana tabacum cv. Xanthi by infiltration of
plant tissue with strains adjusted to an OD600 of 0.2 along with 10-fold serially
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TABLE 1. Strains and plasmids

Designation Main feature Characteristics Reference and/
or source

Bacterial strains
E. coli DH5� General use supE44 �lacU169(�80lacZ�M15) hsdR17

recA1 endA1 gyrA96 thi-1 relA1 Nair
33; Life Technologies

P. syringae pv.
tomato

DC3000 Wild-type strain spontaneous Rif r 18
DC3000 hrcC

mutant
TTSS defective DC3000 hrcC mutant, Rif r Cmr 70

UNL140 hrpJ mutant DC3000 nonpolar hrpJ deletion, Rif r Kmr This work

Plasmids
pAvrRpt2-600 Broad-host-range construct encoding

AvrRpt2
pDSK600 derivative, Spr/Smr 62

pBBR1MCS1/5 Broad-host-range vector Cmr (MCS1) or Gmr (MCS5) 47
pBluescript-II

KS(�)
Cloning vector Apr Stratagene

pCPP2308 Broad-host-range construct encoding HrpL pML122 derivative, Gmr Alan Collmer
pCPP2318 Broad-host-range construct encoding

mature �-lactamase
pCPP30 derivative carrying blaM lacking

signal peptide sequences, Tcr
14

pCPP2330 Broad-host-range construct encoding
AvrB1-FLAG

pML123 derivative, Gmr 28

pCPP2988 Construct carrying nptII pBluescript II KS(�) vector carrying 1.5-kb
HindIII-SalI fragment with nptII lacking
transcriptional terminator, Apr Kmr

1

pCPP3234 Gateway destination vector for CyaA
fusions

Spr Smr 64

pCPP5040 Broad-host-range Gateway destination
vector for HA fusions

pML123 derivative, Gmr 42

pENTR/D-TOPO Gateway entry vector Kmr Invitrogen
pLN307 avrPto1 entry construct Kmr This work
pLN323 avrPtoB entry construct Kmr 42
pLN375 hrpJ entry construct Kmr This work
pLN420 hopB1 entry construct pENTR/D-TOPO derivative, Kmr 60
pLN421 Broad-host-range construct encoding

HopB1-CyaA
pCPP3234 derivative obtained by

recombination with pLN420, Spr/Smr
60

pLN426 Broad-host-range construct encoding
HrpJ-CyaA

pML123 derivative obtained by
recombination with pLN375, Gmr

This work

pLN677 Broad-host-range Gateway destination
vector for HA fusions

pBBR1MCS-5 derivative, Gmr 60

pLN705 Broad-host-range Gateway destination
vector for HA fusions

pBBR1MCS-1 derivative, Cmr 31

pLN726 Broad-host-range construct encoding
HrpJ-HA

pLN677 derivative obtained by recombination
with pLN375, Gmr

This work

pLN736 Broad-host-range construct encoding
HrpJ-HA

pLN705 derivative obtained by recombination
with pLN375, Cmr

This work

pLN820 avrB1 entry construct pENTR/D-TOPO derivative, Kmr This work
pLN918 Broad-host-range construct encoding

AvrB1-CyaA
pCPP3234 derivative obtained by

recombination with pLN820, Spr/Smr
This work

pLN1979 Broad-host-range construct encoding
AvrPtoB-CyaA

pCPP3234 derivative obtained by
recombination with pLN323, Spr/Smr

This work

pLN1985 Broad-host-range construct encoding
AvrPto1-CyaA

pCPP3234 derivative obtained by
recombination with pLN307, Spr/Smr

This work

pLN2043 Construct carrying cyaA pBluescript II KS(�) derivative containing
cyaA, Apr

This work

pLN2179 Construct carrying DNA upstream of hrpJ
adjacent to an nptII cassette

pBluescript II KS(�) derivative, Apr Kmr This work

pLN2180 Broad-host-range hrpJ deletion construct pBluescript II KS(�) derivative, Apr Kmr This work
pLN2190 Construct carrying cyaA with flanking

Gateway recombination sites
pBluescript II KS(�) derivative, Apr Cmr This work

pLN2193 Gateway destination vector for CyaA
fusions

pML123 derivative, Gmr Cmr This work

pLN2234 Broad-host-range construct encoding
HrpJ-CyaA

pLN2193 derivative obtained by
recombination with pLN375, Gmr

This work

pLN2302 hrpJ deletion construct pRK415 derivative carrying insert from
pLN2180, Tcr

This work

pML122/23 Broad-host-range vector Gmr 49
pRK415 Broad-host-range vector Tcr 45
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diluted samples by use of a needleless syringe. The DC3000 hrpJ mutant UNL140
was complemented with pLN426 for the HR and pathogenicity assay. For AvrB1-
and AvrRpt2-dependent HR assays, pCPP2330 (encoding AvrB1-FLAG) and
pAvrRpt2-600 (encoding AvrRpt2) were electroporated into DC3000 or the
DC3000 hrpJ mutant UNL140. A. thaliana ecotype Col-0 was infiltrated with
these strains at an OD600 of 0.1 in 5 mM MES (morpholineethanesulfonic
acid). HR production was assessed 12 h after infiltration. The DC3000 hrpJ
mutant UNL140 was complemented with pLN736 (in strains expressing
AvrB1-FLAG) or pLN726 (in strains expressing AvrRpt2).

Adenylate cyclase (CyaA) translocation assays. Constructs that encoded CyaA
fusions were electroporated into DC3000 for translocation assays. These in-
cluded constructs pLN2234, pLN421, pLN1985, pLN918, and pLN1979, which
express HrpJ-CyaA, HopB1-CyaA, AvrPto1-CyaA, AvrB1-CyaA, and AvrPtoB-
CyaA, respectively. Nicotiana benthamiana leaves were infiltrated with test
strains at an OD600 of 0.6 in 5 mM MES (pH 5.6). After 10 h, the leaf samples
were taken with a 0.8-cm cork borer. Leaf disks were ground in liquid
nitrogen and resuspended in 300 �l of 0.1 M HCl. Protein concentrations
were measured with Bio-Rad total protein assays. Cyclic AMP (cAMP) was
quantified with a direct cAMP corrected enzyme immunoassay kit (Assay
Design, Ann Arbor, MI).

RESULTS

HrpJ shares similarity with YopN homologs from animal
pathogens and contains secretion signal characteristics of P.
syringae TTSS substrates. The Pseudomonas syringae pv. to-
mato DC3000 hrpJ gene is the first gene of a five-gene operon
within the hrp-hrc cluster (2). HrpJ protein was previously
reported to share similarity with Yersinia sp. YopN homologs
(4, 40). PSI-BLAST searches using DC3000 HrpJ identified
HrpJ homologs from Erwinia amylovora and other bacterial
plant pathogens that contain similar group I Hrp TTSSs in the
first PSI-BLAST iteration. Also identified in iteration 1 were
YopN homologs from Bordetella bronchiseptica and other Bor-
detella species. YopN and YopN homologs from other TTSS-
containing bacteria were identified in the second and third
iterations of PSI-BLAST. The amino acid sequence identity
between HrpJ and the YopN homologs was low (between 18
and 22% identity). The only proteins that were clear homologs
of P. syringae HrpJ were the HrpJ homologs in other group I
Hrp TTSSs. Interestingly, we were unable to identify any pro-
teins similar to HrpJ in Ralstonia solanacearum and Xanthomo-
nas campestris, two bacterial plant pathogens that have group
II Hrp TTSSs (4). Our analyses further support that the
DC3000 HrpJ protein is similar to the large family of YopN
proteins identified in many bacteria that contain TTSSs.

The DC3000 HrpJ protein also contained several character-
istics identified in the N termini of other P. syringae type III
secreted substrates (32, 59). For example, the predicted amino
acid sequence of HrpJ contains an isoleucine in position 3, 6%
serine in the first 50 amino acids, and no aspartate or gluta-
mates in the first 12 residues, consistent with the N-terminal
biochemical characteristics of other P. syringae TTSS sub-
strates. In sum, HrpJ appears to be similar to YopN and
contains biochemical characteristics in its N terminus, consis-
tent with it being a type III secreted protein.

HrpJ is secreted in culture and translocated into plant cells
via the P. syringae TTSS. To determine whether HrpJ is se-
creted in culture by the DC3000 TTSS, we made a plasmid
construct, pLN426, which expressed HrpJ fused to an HA
epitope. This construct was introduced by electroporation into
wild-type DC3000 and a DC3000 hrcC mutant defective in type
III secretion. Type III secretion assays were performed with

these strains, and HrpJ-HA was localized to supernatant frac-
tions from wild-type DC3000 cultures, indicating that HrpJ is
secreted in culture via the P. syringae TTSS (Fig. 1A).
HrpJ-HA remained cell bound in cultures from the DC3000
hrcC mutant, confirming that it required a functional TTSS to
be extracellularly localized (Fig. 1A).

To determine whether HrpJ is translocated or injected into
plant cells, we used the adenylate cyclase (CyaA) translocation
assay (11, 65). In this assay, C-terminal CyaA fusions are made
to a candidate type III translocated protein. The CyaA fusion
is expressed in a TTSS-containing bacterium and exposed to
eukaryotic cells. Because CyaA activity is dependent on cal-
modulin, only fusions that are injected into the eukaryotic cell
produce cAMP. Nicotiana benthamiana leaves were infiltrated
with DC3000 and the DC3000 hrcC mutant, each carrying
construct pLN2234, which encoded HrpJ-CyaA. After 10 h,
levels of cAMP were determined with a commercially available
enzyme-linked immunosorbent assay kit as described in Mate-
rials and Methods. Plant tissue infiltrated with wild-type
DC3000 expressing HrpJ-CyaA had significantly higher cAMP
levels than plant tissue infiltrated with the type III defective
mutant expressing HrpJ-CyaA (Fig. 1B). These results clearly
indicate that HrpJ-CyaA is injected into plant cells by the
DC3000 TTSS.

The DC3000 hrpJ mutant is greatly reduced in disease
symptom production, multiplication in planta, and ability to
elicit an HR on nonhost plants. To determine the extent to

FIG. 1. HrpJ is secreted in culture and translocated into plant cells
by the DC3000 type III system. (A) DC3000 and the DC3000 hrcC
mutant, both carrying pLN426, which encodes HrpJ fused to the hem-
agglutinin epitope (HrpJ-HA), were grown under conditions that in-
duce type III secretion and separated into cell-bound and supernatant
fractions as described in Materials and Methods. Samples were sub-
jected to SDS-PAGE and immunoblot analysis using anti-HA or anti-
NPTII antibodies. The NPTII protein is also encoded by pLN426 and
is used here as a control for nonspecific cell lysis. HrpJ-HA was de-
tected in supernatant fractions of DC3000 but not in supernatant
fractions from the hrcC mutant, indicating that HrpJ is secreted by the
DC3000 TTSS. (B) Adenylate cyclase (CyaA) assays with HrpJ-CyaA
and AvrPto1-CyaA fusions were carried out by infiltration of Nicotiana
benthamiana with DC3000 strains carrying construct pLN2234 or
pLN1985, which produced either HrpJ-CyaA or AvrPto1-Cya (a type
III effector known to be injected into plant cells), respectively. Plant
tissue was harvested 10 h after infiltration, and cAMP levels were
determined as described in Materials and Methods. Levels of cAMP
are reported in picomoles of cAMP per microgram of protein, with
standard errors. WT, wild type.
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which HrpJ contributed to plant-microbe interactions, a non-
polar hrpJ mutant was constructed by marker exchange recom-
bination as described in Materials and Methods. Briefly, we
PCR amplified DNA fragments 2 kb upstream and 2.2 kb
downstream of hrpJ and cloned these in the same orientation
on either side of a 1.5-kb neomycin phosphotransferase II
(nptII) cassette that lacked a rho-independent transcription
terminator. A construct carrying this nptII cassette and hrpJ
flanking DNA was introduced into DC3000, and marker ex-
change was selected for by loss of the plasmid marker and
retention of the nptII cassette marker. The resulting mutant
would have the hrpJ gene replaced by the nptII cassette except
for the first 2 codons and the last 2 codons of the 368-codon
hrpJ gene. The hrpJ mutation needed to be nonpolar because
hrpJ is the first gene of an apparent five-gene operon. A non-
polar hrpJ mutant designated UNL140 was confirmed to con-
tain an nptII cassette insertion by PCR and Southern analyses.
Pathogenicity assays were carried out by dip inoculation of A.
thaliana Col-0 plants with wild-type DC3000, the DC3000 hrcC
mutant defective in TTSS, the DC3000 hrpJ mutant UNL140,
and UNL140 carrying pLN426, which encodes HrpJ-HA.
UNL140 was greatly reduced in its ability to produce disease
symptoms on A. thaliana leaves compared to wild-type DC3000
(Fig. 2A). Indeed, the symptoms produced by UNL140 were

similar to those produced by the type III defective hrcC mu-
tant, indicating that HrpJ is required for the bacterium to be
pathogenic and benefit from possessing a TTSS. Wild-type
levels of symptom production were restored when pLN426,
which carries hrpJ, was introduced into UNL140 (Fig. 2A),
demonstrating that the defect was due to the absence of hrpJ
and that the mutation was nonpolar.

The DC3000 hrpJ mutant UNL140 was monitored for its
ability to multiply in A. thaliana leaves over a 4-day period.
UNL140 was greatly reduced in its ability to grow in planta,
exhibiting bacterial titers that were similar to those in the
DC3000 hrcC mutant (Fig. 2B). Near-wild-type DC3000
growth levels were restored when UNL140 carried hrpJ in trans
(Fig. 2B). Taken together, the production of reduced disease
symptoms and the reduction of growth in planta indicate that
HrpJ plays an important role in the TTSS and plant pathoge-
nicity.

Type III translocation of effectors into plant cells is im-
paired in the DC3000 hrpJ mutant. The pathogenicity pheno-
types of the DC3000 hrpJ mutant UNL140 suggested that HrpJ
was required for pathogenicity. Because the central function of
the TTSS is to translocate proteins into eukaryotic cells, we
sought to determine the extent to which UNL140 was affected
in its ability to translocate type III effector proteins into plant
cells. One indication that a P. syringae mutant is affected in
effector translocation is the reduction or abrogation of its abil-
ity to elicit a nonhost HR (60). We infiltrated N. tabacum cv.
Xanthi (tobacco) leaves with different titers of wild-type
DC3000, UNL140, or UNL140(pLN426), which expressed
HrpJ-HA. DC3000 elicited an HR at or above a cell titer of
1 � 107 cells/ml. The DC3000 hrpJ mutant UNL140 was unable
to elicit an HR at a titer of 1 � 107 cells/ml (Fig. 3). UNL140
was capable of eliciting an HR at 1 � 108 cells/ml. The reduced
HR phenotype displayed by UNL140 was complemented when
hrpJ was provided in trans. Since the elicitation of this HR
requires translocation of effectors into plant cells, a reduced
ability to elicit an HR suggests that UNL140 is impaired in its
ability to translocate effectors into plant cells. However, it is
important to note that the residual HR-eliciting ability dis-

FIG. 2. HrpJ is required for symptom production and bacterial
growth in Arabidopsis. (A) Leaves from A. thaliana Col-0 plants that
were dip inoculated into DC3000 suspensions at a concentration of 1 �
108 cells/ml. The strains used were wild-type DC3000, a DC3000 hrcC
mutant, UNL140 (a nonpolar hrpJ mutant), and UNL140 carrying
pLN426, a plasmid containing hrpJ-HA. Photographs were taken 4 days
after inoculation. (B) Bacterial growth in A. thaliana Col-0 leaves of
the strains in panel A was monitored over a 4-day period. Results show
that DC3000 hrpJ mutants are greatly reduced in their ability to grow
in planta and in disease symptom production, and these phenotypes
are complemented when hrpJ is provided in trans.

FIG. 3. DC3000 hrpJ mutant is reduced in its ability to elicit a
nonhost HR, suggesting that it is impaired in effector translocation.
Tobacco leaves (N. tabacum cv. Xanthi) were infiltrated with DC3000
strains at 1 � 108 cells/ml (top of each panel) or 1 � 107 cells/ml
(bottom of each panel). The strains used for infiltration were wild-type
DC3000 (left panel), the DC3000 hrpJ mutant UNL140 (middle
panel), and UNL140 carrying pLN375 (right panel), which contains
hrpJ. UNL140 was unable to elicit an HR at 1 � 107 cells/ml, and this
phenotype was complemented when pLN375 was introduced into
UNL140.
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played by UNL140 suggests that it is not completely disabled in
translocation.

To directly test whether UNL140 is affected in its ability to
translocate specific effectors into plant cells, two different as-
says were used. First, we infiltrated A. thaliana Col-0 with
DC3000 and UNL140 expressing the P. syringae type III ef-
fector AvrB1 (fused to a FLAG epitope) or AvrRpt2 in
trans. AvrB1 and AvrRpt2 are recognized by the resistance
proteins RPM1 and RPS2, respectively, of the innate im-
mune system of A. thaliana Col-0 and result in the induction
of defense responses, including an HR (6, 29, 56). As shown
in Fig. 4A, DC3000 expressing either AvrB1-FLAG or AvrRpt2

elicited an HR in A. thaliana Col-0 plants within 12 h. In
contrast, UNL140 expressing AvrB1-FLAG or AvrRpt2 did
not elicit an HR in these plants unless hrpJ was also provided
in trans (Fig. 4A).

Failure to elicit an Avr protein-dependent HR may be due
to the inability to inject the Avr protein (i.e., effector protein)
into plant cells, or it may be due to the failure of the Avr
protein to be exported from the bacterial cell. To determine
whether the DC3000 hrpJ mutant UNL140 was competent to
secrete AvrB1 via the TTSS, we performed secretion assays
with DC3000 and UNL140 expressing AvrB1-FLAG. Immu-
noblot analysis of culture supernatant fractions confirmed that
AvrB1-FLAG was secreted via the TTSS by both DC3000 and
UNL140 (Fig. 4B). Collectively, these data indicate that the
DC3000 hrpJ mutant cannot translocate AvrB1 or AvrRpt2 in
the amounts required to elicit an HR. Because the hrpJ mutant
secreted AvrB1 in culture, the translocation defect exhibited by
this mutant appears to be at the level of translocation and not
in the secretion of these proteins from the bacterial cell.

We used CyaA translocation assays to test whether UNL140
was defective in the translocation of other P. syringae type III
effectors that have previously been shown to be translocated
into plant cells by P. syringae. Constructs that encoded
AvrPto1-CyaA, AvrB1-CyaA, HopB1-CyaA, and AvrPtoB-
CyaA were electroporated into wild-type DC3000 and the
DC3000 hrpJ mutant UNL140. N. benthamiana was infiltrated
with these strains, and cAMP levels in plant tissue were deter-
mined at 10 h postinfiltration. In each case, cAMP levels were
significantly elevated in tissue infiltrated with DC3000 express-
ing the effector-CyaA fusions whereas cAMP levels in tissue
infiltrated with the corresponding UNL140 strains were ex-
tremely low, indicating that UNL140 is defective in transloca-
tion (Table 2). It is important to note that even though cAMP
levels were low in samples infiltrated with UNL140 expressing
AvrB1-CyaA and AvrPtoB-CyaA, they were higher than the
levels produced by UNL140 infiltrated with HopB1-CyaA and
AvrPto1-CyaA (Table 2). This suggests that the translocation
of specific effectors was affected differently by the absence of
HrpJ. This is consistent with UNL140 retaining residual non-
host HR-eliciting ability (Fig. 3). It is not clear whether the
very low levels of cAMP produced by all of the effector-CyaA
fusion strains correspond to biologically relevant translocation.
Indeed, the fact that UNL140 expressing AvrB1 did not elicit
an HR when infiltrating A. thaliana (Fig. 4A) suggests that the

FIG. 4. DC3000 hrpJ mutant does not translocate Avr proteins into
Arabidopsis but maintains the ability to secrete AvrB1 in culture.
(A) The well-characterized type III effector genes avrB1 and avrRpt2,
which encode proteins recognized by the innate immune system of A.
thaliana Col-0 (i.e., Avr proteins), were introduced into wild-type
DC3000 and the DC3000 hrpJ mutant UNL140 on plasmids pCPP2330
and pAvrRpt2-600, respectively. A. thaliana Col-0 was infiltrated with
these strains separately, and 12 h later, they were assessed for HR
production. UNL140 was unable to elicit an AvrB1- or AvrRpt2-specific
HR unless plasmid-encoded HrpJ was provided. (B) DC3000(pCPP2330)
and UNL140(pCPP2330) were grown in type III-inducing conditions
and separated into cell-bound and supernatant fractions. These sam-
ples were subjected to SDS-PAGE and immunoblot analysis using
anti-FLAG or anti-NPTII antibodies, and these immunoblots are
shown. NPTII was used as a control for nonspecific cell lysis. The
DC3000 hrpJ mutant UNL140 secreted AvrB1-FLAG in culture, indi-
cating that HrpJ was not required for type III secretion of this effector
into culture supernatants.

TABLE 2. Adenylate cyclase (CyaA) translocation assays of effector
CyaA fusions in wild-type DC3000 and the DC3000

hrpJ mutant UNL140

Effector-CyaA
fusiona

cAMP activity (pmol/�g protein)b for:

DC3000 UNL140

AvrPto1 123.3 	 3.5 0.8 	 0.1
AvrB1 58.2 	 0.0 4.8 	 0.0
HopB1 50.1 	 5.1 0.1 	 0.0
AvrPtoB 51.0 	 5.2 8.2 	 1.3

a Wild-type DC3000 or the hrpJ mutant UNL140 carrying pLN1985 (AvrPto1),
pLN918 (AvrB1), pLN421 (HopB1), or pLN1979 (AvrPtoB) was used in CyaA
assays.

b cAMP was quantified in triplicate for each sample, and the values are means 	
standard deviations.
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translocation of AvrB1 was not at levels needed for detection
by the RPM1-dependent innate immune system. In sum, HrpJ
plays an important role in the translocation of specific effectors
but is not required for the type III secretion of effectors from
the bacterial cell.

DC3000 hrpJ mutants can secrete the HrpA1 pilus protein
and the AvrPto1 effector in culture but cannot secrete the
HrpZ1 harpin. The failure of effectors to be translocated by
the DC3000 hrpJ mutant may be related to the failure of the
mutant to secrete to the milieu accessory proteins needed for
translocation. To investigate more closely the effect that HrpJ
has on secretion in culture of other type III substrates, we
performed type III secretion assays that monitored the secre-
tion of three different types of type III secreted proteins from
the DC3000 hrpJ mutant UNL140: HrpA1, which is the major
component of the Hrp pilus (63); HrpZ1, which is an accessory
protein belonging to a group of proteins called harpins, which
are secreted in high abundance in culture (34); and AvrPto1,
which is a member of the effector class and known to be
secreted in culture (66). DC3000 and UNL140 were grown in
type III-inducing conditions, separated into cell-bound and
supernatant fractions, and subjected to SDS-PAGE and im-
munoblot analysis using antibodies that recognized natively
expressed proteins. HrpA1 and AvrPto1 were detected in the
supernatant fraction of DC3000 and UNL140, although in
somewhat reduced amounts (Fig. 5). Surprisingly, we were
unable to detect HrpZ1 in supernatant fractions of UNL140
cultures even though the experiment was repeated several
times, indicating that HrpJ plays an important role in the

secretion of HrpZ1 that is different from its role in the type III
secretion of either HrpA1 or AvrPto1 (Fig. 5).

Yersinia mutants defective in YopN constitutively secreted
Yop effectors even under conditions that normally inhibit type
III secretion (i.e., in the presence of 2.5 mM calcium at 37°C)
(25, 69). The addition of calcium to DC3000 cultures did not
inhibit type III secretion (data not shown). However, the P.
syringae TTSS does secrete TTSS substrates in a temperature-
and pH-dependent manner (66). To determine whether the
DC3000 hrpJ mutant UNL140 displayed a deregulation phe-
notype analogous to that of Yersinia yopN mutants, we tested
whether UNL140 could secrete TTSS substrates in tempera-
ture and pH conditions reported to inhibit P. syringae type III
secretion (66). We performed type III secretion assays with
wild-type DC3000 and the DC3000 hrpJ mutant UNL140 at
20°C, a permissive temperature for secretion, and at 30°C, a
nonpermissive temperature for type III secretion. At 20°C, we
detected HrpA1 and AvrPto1 in the supernatant fractions of
both wild-type DC3000 and UNL140, indicating that these
proteins were secreted from both strains. However, at 30°C,
neither strain secreted detectable amounts of HrpA1 or
AvrPto1 to the supernatant fraction. As observed in Fig. 5,
HrpZ1 was not detected in the supernatant fractions of
UNL140. In analogous experiments with varied pH, secretion
assays were performed with a pH of 6.0, which is permissive for
type III secretion, and a pH of 7.0, which is nonpermissive.
HrpA1 and AvrPto1 were found to be secreted by both strains
under the permissive-pH condition but not under the nonper-
missive-pH condition (data not shown). To ensure that the
TTSS was fully induced, we repeated the temperature and pH
experiments with strains constitutively expressing HrpL, which
is an alternate sigma factor required for the transcription of P.
syringae type III-related genes (68). These experiments pro-
duced results identical to those described above with strains
that did not express HrpL in trans (data not shown). Thus,
UNL140 did not exhibit a detectable deregulation phenotype
and maintained a temperature- and pH-dependent TTSS.

DISCUSSION

We have shown here that HrpJ is secreted and translocated
by the P. syringae pv. tomato DC3000 TTSS (Fig. 1). A DC3000
mutant defective in HrpJ was severely affected in its ability to
grow in planta and cause disease symptoms in A. thaliana (Fig.
2). This demonstrates that HrpJ is important for the DC3000
TTSS and plant pathogenesis. Additionally, the DC3000 hrpJ
mutant possessed phenotypes that suggested that it was im-
paired in effector translocation into plant cells (Fig. 3 and 4;
Table 2). Interestingly, this defect appeared to be at the level
of translocation because the hrpJ mutant secreted AvrPto1 and
AvrB1, two type III effectors, in culture (Fig. 4B and 5) but was
unable to translocate these and other effectors into plant cells
(Fig. 4 and Table 2). The DC3000 hrpJ mutant was also capable
of secreting HrpA1 (Fig. 5), the main component of the Hrp
type III pilus (63), suggesting that the hrpJ mutant could se-
crete type III effectors and at least one class of extracellular
accessory protein. However, the hrpJ mutant could not secrete
the HrpZ1 harpin (Fig. 5), a protein that is a candidate trans-
locator and normally secreted in high abundance by P. syringae
in culture (1, 34, 50).

FIG. 5. DC3000 hrpJ mutant maintains the ability to secrete HrpA1
and AvrPto1 in culture but cannot secrete detectable amounts of
HrpZ1. DC3000 strains were grown in type III-inducing conditions,
and secretion assays were performed to determine whether natively
expressed TTSS substrates were secreted in culture. The strains used
were as follows: wild-type DC3000, a DC3000 hrcC mutant defective in
TTSS, the DC3000 hrpJ mutant UNL140, and UNL140 carrying
pLN726, which contains hrpJ. The cultures were separated into cell-
bound and supernatant fractions, and these were subjected to SDS-
PAGE and immunoblot analysis. HrpA1, HrpZ1, and AvrPto1 were
detected with anti-HrpA1, -HrpZ1, and -AvrPto1 antibodies, respec-
tively. Each strain also contained pCPP2318, which encodes �-lacta-
mase (�-Lac) lacking its export sequence and therefore remains cell
bound unless significant nonspecific cell lysis occurs. Reduced levels of
HrpA1 and AvrPto1 were detected in hrpJ supernatant fractions. In
contrast, HrpZ1 was not detected in supernatant fractions of the hrpJ
mutant.
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What is the role of HrpJ in the DC3000 TTSS? One impor-
tant clue is that HrpJ shares weak similarity with YopN from
Yersinia spp. as well as other apparent YopN homologs in
other TTSS-containing bacteria (4, 40). YopN acts as a control
protein for the Ysc TTSS because Yersinia sp. yopN mutants
constitutively secrete Yop type III effectors in culture, even
under conditions (e.g., in the presence of calcium) that nor-
mally prevent Yop secretion (25). The possibility of identifying
a DC3000 mutant that constitutively secretes effectors was one
of the reasons that we initiated this study. However, as we show
here, the DC3000 hrpJ mutant did not secrete type III effectors
under temperature and pH conditions known to inhibit type III
secretion (Fig. 6). Thus, we failed to detect a constitutive secre-
tion phenotype similar to the phenotype exhibited by Yersinia
yopN mutants. It may be that a hrpJ mutant would exhibit such
a phenotype under other repressive conditions that as of yet
have not been identified.

We found that HrpJ-CyaA was translocated into plant cells
(Fig. 1B). Since hrpJ resides in a DNA region that encodes the
Hrp type III apparatus and the hrpJ mutant is defective in
translocation, we suspect that HrpJ plays a role in controlling
the secretion of other type III secreted proteins. It does appear
that type III secreted proteins that act outside the plant cell
can be found to be translocated. For example, Guttman et al.
(32) found that HrpW1 was translocated into plant cells by P.
syringae even though its pectate lyase domain suggests that this
protein is active on the plant cell wall. The Yersinia YopN
protein has been reported to be translocated into animal cells
even though no function in host cells has been determined (15,
20, 26). Thus, the translocation of a type III secreted protein
inside eukaryotic cells does not necessarily indicate that it acts
within eukaryotic cells.

The DC3000 hrpJ mutant was severely reduced in its ability
to translocate type III effectors into plant cells (Fig. 4 and
Table 2). However, it retained a reduced ability to elicit a
nonhost HR on tobacco plants (Fig. 3), and strains expressing
AvrB1-CyaA and AvrPtoB-CyaA produced cAMP amounts
that, while very small, were still significantly larger than cAMP
production by strains expressing AvrPto1-CyaA and HopB1-
CyaA. This suggests that the hrpJ mutant retained a weak
ability to translocate specific effectors. Because the hrpJ mu-
tant is essentially nonpathogenic (Fig. 2), the very low level of
translocation must be insufficient to support pathogenicity.
The translocation defect in the DC3000 hrpJ mutant appears
more severe than those in Yersinia yopN mutants, which retain
the ability to translocate effectors (7, 20). This suggests that
these proteins, while sharing similarities, may not have identi-
cal roles in their respective TTSSs.

The implications of the failure of the hrpJ mutant to secrete
the HrpZ1 harpin in culture deserve additional comment. Un-
like the hrpJ mutant, hrpZ1 mutants are not greatly affected in
pathogenicity (37). Therefore, it seems likely that the hrpJ
phenotype is not due solely to the failure to secrete HrpZ1.
The secretion of other extracellular accessory proteins may be
blocked in hrpJ mutants. Interestingly, Salmonella enterica
InvE, a type III-related protein that has been reported to share
similarity with YopN (40), is required for effector translocation
and the secretion of wild-type amounts of the translocators
SipB, SipC, and SipD (48). As noted above, there is indirect
evidence that HrpZ1 acts as a translocator (28, 50), and our
results provide additional circumstantial evidence that this is
the case. Therefore, an attractive hypothesis is that the P.
syringae hrpJ mutant is unable to translocate type III effectors
due, at least in part, to its inability to secrete translocators.

The hrpJ mutant phenotype seems more similar to the S.
enteric invE mutant phenotype than it does to the phenotype of
Yersinia yopN mutants in that yopN mutants can secrete all
proteins known to be secreted by their wild-type strains. It
should be noted that one important difference between InvE
and HrpJ (and YopN) is that InvE remains cell bound and is
not a type III secreted protein (48). This leaves open the
possibility that YopN and HrpJ exert their function from
within the bacterial cell. Indeed, recent models for YopN func-
tion suggest that YopN blocks the secretion of other type III
secreted proteins by plugging the type III pore from within the
bacterial cell (15, 24).

Our current model for HrpJ is that it acts as a control
protein that may determine which type III proteins are se-
creted and the order of their secretion. For example, there may
be a requirement for HrpZ1 and other accessory proteins to be
secreted prior to the secretion of the effectors and, in the
absence of HrpJ, type III effectors are inappropriately released
before contact with the plant cell is established, leading to
severely reduced translocation. This translocation defect may
be further exacerbated by the failure of HrpZ1 to be extracel-
lularly localized. Future experiments will identify the inventory
of type III secreted proteins that are not secreted in culture
from the hrpJ mutant. Identifying this group of proteins should
shed additional light on why the hrpJ mutant is defective in
translocation. We will also test whether the hrpJ mutant phe-
notypes are complemented by a cell-bound HrpJ derivative
lacking type III secretion signals. This will allow us to address

FIG. 6. DC3000 hrpJ mutant retains a TTSS that functions in a
temperature-dependent manner. DC3000 and the DC3000 hrpJ mu-
tant UNL140 were grown in type III-inducing medium at temperatures
that are known to induce wild-type DC3000 type III secretion (20°C)
or inhibit it (30°C). These cultures were separated into cell-bound and
supernatant fractions and subjected to SDS-PAGE and immunoblot
analysis. HrpA1, HrpZ1, and AvrPto1 were detected with anti-HrpA1,
-HrpZ1, and -AvrPto1 antibodies, respectively. Both strains also
carried pCPP2318, which encodes �-lactamase (�-Lac) without its
export signal and acted as a control for nonspecific cell lysis. An
immunoblot from a representative experiment is shown. UNL140
type III secretion maintained regulation by temperature as previ-
ously shown for DC3000 (66).
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whether there is a requirement for HrpJ to be secreted before
effectors can be translocated or for HrpZ1 to be secreted.
Determining the molecular basis for the role of HrpJ in type
III secretion will likely lead to a better understanding of how
type III protein traffic is deployed during bacterium-plant in-
teractions.
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and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25:3389–3402.

6. Bent, A. F., B. N. Kunkel, D. Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat,
J. Leung, and B. J. Staskawicz. 1994. RPS2 of Arabidopsis thaliana: a leucine-
rich repeat class of plant disease resistance genes. Science 265:1856–1860.

7. Boland, A., M.-P. Sory, M. Iriarte, C. Kerbourch, P. Wattiau, and G. R.
Cornelis. 1996. Status of YopM and YopN in the Yersinia Yop virulon:
YopM of Y. enterocolitica is internalized inside the cytosol of PU5-1.8 mac-
rophages by the YopB, D, N delivery apparatus. EMBO J. 15:5191–5201.

8. Brubaker, R. R., and M. J. Surgalla. 1964. The effect of Ca�� and Mg�� on
lysis, growth, and productionof virulence antigens by Pasteurella pestis J. In-
fect. Dis. 114:13–25.

9. Buell, C. R., V. Joardar, M. Lindeberg, J. Selengut, I. T. Paulsen, M. L.
Gwinn, R. J. Dodson, R. T. Deboy, A. S. Durkin, J. F. Kolonay, R. Madupu,
S. Daugherty, L. Brinkac, M. J. Beanan, D. H. Haft, W. C. Nelson, T.
Davidsen, N. Zafar, L. Zhou, J. Liu, Q. Yuan, H. Khouri, N. Fedorova, B.
Tran, D. Russell, K. Berry, T. Utterback, S. E. Van Aken, T. V. Feldblyum,
M. D’Ascenzo, W. L. Deng, A. R. Ramos, J. R. Alfano, S. Cartinhour, A. K.
Chatterjee, T. P. Delaney, S. G. Lazarowitz, G. B. Martin, D. J. Schneider,
X. Tang, C. L. Bender, O. White, C. M. Fraser, and A. Collmer. 2003. The
complete sequence of the Arabidopsis and tomato pathogen Pseudomonas
syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100:10181–10186.

10. Buttner, D., and U. Bonas. 2002. Port of entry—the type III secretion
translocon. Trends Microbiol. 10:186–192.

11. Casper-Lindley, C., D. Dahlbeck, E. T. Clark, and B. J. Staskawicz. 2002.
Direct biochemical evidence for type III secretion-dependent translocation
of the AvrBs2 effector protein into plant cells. Proc. Natl. Acad. Sci. USA
99:8336–8341.

12. Chang, J. H., J. M. Urbach, T. F. Law, L. W. Arnold, A. Hu, S. Gombar, S. R.
Grant, F. M. Ausubel, and J. L. Dangl. 2005. A high-throughput, near-
saturating screen for type III effector genes from Pseudomonas syringae.
Proc. Natl. Acad. Sci. USA 102:2549–2554.

13. Charkowski, A. O., J. R. Alfano, G. Preston, J. Yuan, S. Y. He, and A.
Collmer. 1998. The Pseudomonas syringae pv. tomato HrpW protein has
domains similar to harpins and pectate lyases and can elicit the plant hyper-
sensitive response and bind to pectate. J. Bacteriol. 180:5211–5217.

14. Charkowski, A. O., H.-C. Huang, and A. Collmer. 1997. Altered localization
of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that
different components of the type III secretion pathway control protein trans-

location across the inner and outer membranes of gram-negative bacteria. J.
Bacteriol. 179:3866–3874.

15. Cheng, L. W., O. Kay, and O. Schneewind. 2001. Regulated secretion of
YopN by the type III machinery of Yersinia enterocolitica J. Bacteriol. 183:
5293–5301.

16. Chisholm, S. T., G. Coaker, B. Day, and B. J. Staskawicz. 2006. Host-
microbe interactions: shaping the evolution of the plant immune response.
Cell 124:803–814.

17. Collmer, A., M. Lindeberg, T. Petnicki-Ocwieja, D. Schneider, and J. R.
Alfano. 2002. Genomic mining type III secretion system effectors in Pseudo-
monas syringae yields new picks for all TTSS prospectors. Trends Microbiol.
10:462–469.

18. Cuppels, D. A., and T. Ainsworth. 1995. Molecular and physiological char-
acterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae
pv. maculicola strains that produce the phytotoxin coronatine. Appl. Envi-
ron. Microbiol. 61:3530–3536.

19. Dangl, J. L. 1994. The enigmatic avirulence genes of phytopathogenic bac-
teria, p. 99–118. In J. L. Dangl (ed.), Current topics in microbiology and
immunology: bacterial pathogenesis of plants and animals—molecular and
cellular mechanisms, vol. 192. Springer-Verlag, Berlin, Germany.

20. Day, J. B., F. Ferracci, and G. V. Plano. 2003. Translocation of YopE and
YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG
deletion mutants measured using a phosphorylatable peptide tag and phos-
phospecific antibodies. Mol. Microbiol. 47:807–823.

21. Espinosa, A., and J. R. Alfano. 2004. Disabling surveillance: bacterial type III
secretion system effectors that suppress innate immunity. Cell. Microbiol.
6:1027–1040.

22. Espinosa, A., M. Guo, V. C. Tam, Z. Q. Fu, and J. R. Alfano. 2003. The
Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein
tyrosine phosphatase activity and suppresses programmed cell death in
plants. Mol. Microbiol. 49:377–387.

23. Feil, H., W. S. Feil, P. Chain, F. Larimer, G. DiBartolo, A. Copeland, A.
Lykidis, S. Trong, M. Nolan, E. Goltsman, J. Thiel, S. Malfatti, J. E. Loper,
A. Lapidus, J. C. Detter, M. Land, P. M. Richardson, N. C. Kyrpides, N.
Ivanova, and S. E. Lindow. 2005. Comparison of the complete genome
sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato
DC3000. Proc. Natl. Acad. Sci. USA 102:11064–11069.

24. Ferracci, F., F. D. Schubot, D. S. Waugh, and G. V. Plano. 2005. Selection
and characterization of Yersinia pestis YopN mutants that constitutively
block Yop secretion. Mol. Microbiol. 57:970–987.

25. Forsberg, A., A. M. Viitanen, M. Skurnik, and H. Wolf-Watz. 1991. The
surface-located YopN protein is involved in calcium signal transduction in
Yersinia pseudotuberculosis. Mol. Microbiol. 5:977–986.

26. Francis, M. S., and H. Wolf-Watz. 1998. YopD of Yersinia pseudotuberculosis
is translocated into the cytosol of HeLa epithelial cells: evidence of a struc-
tural domain necessary for translocation. Mol. Microbiol. 29:799–813.

27. Genin, S., and C. A. Boucher. 1994. A superfamily of proteins involved in
different secretion pathways in gram-negative bacteria: modular structure
and specificity of the N-terminal domain. Mol. Gen. Genet. 243:112–118.

28. Gopalan, S., D. W. Bauer, J. R. Alfano, A. O. Loniello, S. Y. He, and A.
Collmer. 1996. Expression of the Pseudomonas syringae avirulence protein
AvrB in plant cells alleviates its dependence on the hypersensitive response
and pathogenicity (Hrp) secretion system in eliciting genotype-specific hy-
persensitive cell death. Plant Cell 8:1095–1105.

29. Grant, M. R., L. Godlard, E. Straube, T. Ashfield, J. Lewald, A. Sattler,
R. W. Innes, and J. L. Dangl. 1995. Structure of the Arabidopsis RPM1 gene
enabling dual specificity disease resistance. Science 269:843–846.

30. Greenberg, J. T., and B. A. Vinatzer. 2003. Identifying type III effectors of
plant pathogens and analyzing their interaction with plant cells. Curr. Opin.
Microbiol. 6:20–28.

31. Guo, M., S. T. Chancey, F. Tian, Z. Ge, Y. Jamir, and J. R. Alfano. 2005.
Pseudomonas syringae type III chaperones ShcO1, ShcS1, and ShcS2 facili-
tate translocation of their cognate effectors and can substitute for each other
in the secretion of HopO1-1. J. Bacteriol. 187:4257–4269.

32. Guttman, D. S., B. A. Vinatzer, S. F. Sarkar, M. V. Ranall, G. Kettler, and
J. T. Greenberg. 2002. A functional screen for the type III (Hrp) secretome
of the plant pathogen Pseudomonas syringae Science 295:1722–1726.

33. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plas-
mids. J. Mol. Biol. 166:557–580.

34. He, S. Y., H.-C. Huang, and A. Collmer. 1993. Pseudomonas syringae pv.
syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits
the hypersensitive response in plants. Cell 73:1255–1266.

35. He, S. Y., K. Nomura, and T. S. Whittam. 2004. Type III protein secretion
mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta
1694:181–206.

36. Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. Biol.
44:321–334.

37. Hirano, S. S., A. O. Charkowski, A. Collmer, D. K. Willis, and C. D. Upper.
1999. Role of the Hrp type III protein secretion system in growth of Pseudo-
monas syringae pv. syringae B728a on host plants in the field. Proc. Natl.
Acad. Sci. USA 96:9851–9856.

38. Hirano, S. S., and C. D. Upper. 2000. Bacteria in the leaf ecosystem with

6068 FU ET AL. J. BACTERIOL.

 on July 24, 2018 by U
N

IV
 O

F
 S

O
U

T
H

 C
A

R
O

LIN
A

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte.
Microbiol. Mol. Biol. Rev. 64:624–653.

39. Hoyos, M. E., C. M. Stanley, S. Y. He, S. Pike, X.-A. Pu, and A. Novacky.
1996. The interaction of harpinPss with plant cell walls. Mol. Plant-Microbe
Interact. 9:608–616.

40. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens
of animals and plants. Microbiol. Mol. Biol. Rev. 62:379–433.

41. Huynh, T. V., D. Dahlbeck, and B. J. Staskawicz. 1989. Bacterial blight of
soybean: regulation of a pathogen gene determining host cultivar specificity.
Science 245:1374–1377.

42. Jamir, Y., M. Guo, H.-S. Oh, T. Petnicki-Ocwieja, S. Chen, X. Tang, M. B.
Dickman, A. Collmer, and J. R. Alfano. 2004. Identification of Pseudomonas
syringae type III effectors that suppress programmed cell death in plants and
yeast. Plant J. 37:554–565.

43. Jin, Q., and S.-Y. He. 2001. Role of the Hrp pilus in type III protein secretion
in Pseudomonas syringae Science 294:2556–2558.

44. Joardar, V., M. Lindeberg, R. W. Jackson, J. Selengut, R. Dodson, L. M.
Brinkac, S. C. Daugherty, R. Deboy, A. S. Durkin, M. G. Giglio, R. Madupu,
W. C. Nelson, M. J. Rosovitz, S. Sullivan, J. Crabtree, T. Creasy, T. Davidsen,
D. H. Haft, N. Zafar, L. Zhou, R. Halpin, T. Holley, H. Khouri, T. Feldblyum,
O. White, C. M. Fraser, A. K. Chatterjee, S. Cartinhour, D. J. Schneider, J.
Mansfield, A. Collmer, and C. R. Buell. 2005. Whole-genome sequence analysis
of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among
pathovars in genes involved in virulence and transposition. J. Bacteriol. 187:
6488–6498.

45. Keen, N. T., S. Tamaski, D. Kobayashi, and D. Trollinger. 1988. Improved
broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene
70:191–197.

46. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the
demonstration of pyocyanin and fluorescein. J. Lab. Med. 22:301–307.

47. Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M.
Roop, and K. M. Peterson. 1995. Four new derivatives of the broad-host-
range cloning vector pBBR1MCS, carrying different antibiotic-resistance
cassettes. Gene 166:175–176.

48. Kubori, T., and J. E. Galan. 2002. Salmonella type III secretion-associated
protein InvE controls translocation of effector proteins into host cells. J.
Bacteriol. 184:4699–4708.

49. Labes, M., A. Puhler, and R. Simon. 1990. A new family of RSF1010-derived
expression and lac-fusion broad-host-range vectors for gram-negative bacte-
ria. Gene 89:37–46.

50. Lee, J., B. Klusener, G. Tsiamis, C. Stevens, C. Neyt, A. P. Tampakaki, N. J.
Panopoulos, J. Noller, E. W. Weiler, G. R. Cornelis, and J. W. Mansfield.
2001. HrpZPsph from the plant pathogen Pseudomonas syringae pv. phase-
olicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc.
Natl. Acad. Sci. USA 98:289–294.

51. Li, C. M., I. Brown, J. Mansfield, C. Stevens, T. Boureau, M. Romantschuk,
and S. Taira. 2002. The Hrp pilus of Pseudomonas syringae elongates from its
tip and acts as a conduit for translocation of the effector protein HrpZ.
EMBO J. 21:1909–1915.

52. Lindeberg, M., J. Stavrinides, J. H. Chang, J. R. Alfano, A. Collmer, J. L.
Dangl, J. T. Greenberg, J. W. Mansfield, and D. S. Guttman. 2005. Proposed
guidelines for a unified nomenclature and phylogenetic analysis of type III
Hop effector proteins in the plant pathogen Pseudomonas syringae Mol.
Plant-Microbe Interact. 18:275–282.

53. Lindgren, P. B. 1997. The role of hrp genes during plant-bacterial interac-
tions. Annu. Rev. Phytopathol. 35:129–152.

54. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986. Gene cluster of
Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean
plants and hypersensitivity on nonhost plants. J. Bacteriol. 168:512–522.

55. Michiels, T., P. Wattiau, R. Brasseur, J.-M. Ruysschaert, and G. Cornelis.
1990. Secretion of Yop proteins by Yersiniae. Infect. Immun. 58:2840–2849.

56. Mindrinos, M., F. Katagiri, G.-L. Yu, and F. M. Ausubel. 1994. The A.
thaliana disease resistance gene RPS2 encodes a protein containing a nucle-
otide-binding site and leucine-rich repeats. Cell 78:1089–1099.

57. Mudgett, M. B. 2005. New insights to the function of phytopathogenic bac-
terial type III effectors in plants. Annu. Rev. Plant Biol. 56:509–531.

58. Nomura, K., M. Melotto, and S. Y. He. 2005. Suppression of host defense in
compatible plant-Pseudomonas syringae interactions. Curr. Opin. Plant Biol.
8:1–8.

59. Petnicki-Ocwieja, T., D. J. Schneider, V. C. Tam, S. T. Chancey, L. Shan, Y.
Jamir, L. M. Schechter, M. D. Janes, C. R. Buell, X. Tang, A. Collmer, and
J. R. Alfano. 2002. Genomewide identification of proteins secreted by the
Hrp type III protein secretion system of Pseudomonas syringae pv. tomato
DC3000. Proc. Natl. Acad. Sci. USA 99:7652–7657.

60. Petnicki-Ocwieja, T., K. van Dijk, and J. R. Alfano. 2005. The hrpK operon
of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted
by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative
type III translocator. J. Bacteriol. 187:649–663.

61. Pettersson, J., R. Nordfelth, E. Dubinina, T. Bergman, M. Gustafsson, K. E.
Magnusson, and H. Wolf-Watz. 1996. Modulation of virulence factor expres-
sion by pathogen target cell contact. Science 273:1231–1233.

62. Pirhonen, M. U., J. C. Lidell, D. L. Rowley, S. W. Lee, S. Jin, Y. Liang, S.
Silverstone, N. T. Keen, and S. W. Hutcheson. 1996. Phenotypic expression
of Pseudomonas syringae avr genes in E. coli is linked to the activities of the
hrp-encoded secretion system. Mol. Plant-Microbe Interact. 9:252–260.

63. Roine, E., W. Wei, J. Yuan, E. L. Nurmiaho-Lassila, N. Kalkkinen, M.
Romantschuk, and S. Y. He. 1997. Hrp pilus: an hrp-dependent bacterial
surface appendage produced by Pseudomonas syringae pv. tomato DC3000.
Proc. Natl. Acad. Sci. USA 94:3459–3464.

64. Schechter, L. M., K. A. Roberts, Y. Jamir, J. R. Alfano, and A. Collmer. 2004.
Pseudomonas syringae type III secretion system targeting signals and novel
effectors studied with a Cya translocation reporter. J. Bacteriol. 186:543–555.

65. Sory, M. P., and G. R. Cornelis. 1994. Translocation of ahybrid YopE-
adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Micro-
biol. 14:583–594.

66. van Dijk, K., D. E. Fouts, A. H. Rehm, A. R. Hill, A. Collmer, and J. R.
Alfano. 1999. The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are
secreted in culture from Pseudomonas syringae pathovars via the Hrp (type
III) protein secretion system in a temperature- and pH-sensitive manner.
J. Bacteriol. 181:4790–4797.

67. Wei, Z.-M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S. Y. He, A. Collmer, and
S. V. Beer. 1992. Harpin, elicitor of the hypersensitive response produced by
the plant pathogen Erwinia amylovora Science 257:85–88.

68. Xiao, Y., and S. W. Hutcheson. 1994. A single promoter sequence recognized
by a newly identified alternate sigma factor directs expression of pathoge-
nicity and host range determinants in Pseudomonas syringae J. Bacteriol.
176:3089–3091.

69. Yother, J., and J. D. Goguen. 1985. Isolation and characterization of Ca2�-
blind mutants of Yersinia pestis. J. Bacteriol. 164:704–711.

70. Yuan, J., and S. Y. He. 1996. The Pseudomonas syringae Hrp regulation and
secretion system controls the production and secretion of multiple extracel-
lular proteins. J. Bacteriol. 178:6399–6402.

VOL. 188, 2006 PSEUDOMONAS SYRINGAE HrpJ PROTEIN 6069

 on July 24, 2018 by U
N

IV
 O

F
 S

O
U

T
H

 C
A

R
O

LIN
A

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/

